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ABSTRACT  
This paper describes a component-based non-linear physical 
system simulation prototyping package written entirely in Java 
using object-oriented design to provide scientists and engineers a 
“developer-friendly” software environment for large-scale 
computational method and physical model development.  The 
software design centers on the Jacobian-Free Newton-Krylov 
solution method surrounding a finite-volume treatment of 
conservation equations. This enables a clean component-based 
implementation.  We first provide motivation for the development 
of the software and then describe software structure.  Discussion 
of software structure includes a description of the use of Java’s 
built-in thread facility that enables data-parallel, shared-memory 
computations on a wide variety of unstructured grids with 
triangular, quadrilateral, tetrahedral and hexahedral elements.  We 
also discuss the use of Java’s inheritance mechanism in the 
construction of a hierarchy of physics-systems objects and linear 
and non-linear solver objects that simplify development and foster 
software re-use.  As a compliment to the discussion of these 
object hierarchies, we provide a brief review of the Jacobian-Free 
Newton-Krylov nonlinear system solution method and discuss 
how it fits into our design.  Following this, we show results from 
preliminary calculations and then discuss future plans including 
the extension of the software to distributed memory computer 
systems. 
 
Categories and Subject Descriptors 
D.1.3 [Software] Programming Techniques—Concurrent 
programming; D.1.5 [Software]: Programming Techniques—
Object-Oriented Programming; D.2.6 [Software]: Software 
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Engineering—Programming Environment; D.2 13 [Software]: 
Software Engineering—Reusable Software 
 
General Terms 
Design, Documentation 
 
Keywords 
Java, object oriented, components, solver, Newton, Krylov, 
Jacobian, threads, parallel, physics 
 
1. INTRODUCTION 
Specialized simulation software for non-linear physical systems is 
one of the central research products from many of the programs 
here at Los Alamos National Laboratory (LANL) as well as other 
similar institutions.  These systems are often 3-dimensional and 
are solved on unstructured computational grids.  Thus, these 
software systems can be quite complex.  Very often, these 
projects involve the modification of existing software to produce 
new capabilities.  Furthermore, program goals change frequently 
as funding priorities change or as research developments lead to 
new branches of investigation.  As such, application development 
is often, by far, the bottleneck on these projects and there is, 
therefore, substantial incentive for software and software 
environments that are “developer-friendly”—easy for scientific 
and engineering software developers to modify and extend.  
Fortunately, there are two technology trends of recent years that 
we believe can be used to address this need in a coordinated 
fashion. 

First, object-oriented and component-based software has made 
an enormous impact in the commercial software arena for 
telecommunications and e-Business.  Enhancement of software 
developer productivity has come from a variety of sources 
including new languages such as Java which support object 
orientation and component software and a host of software 
developer productivity tools including graphical design 
applications, graphical debuggers, etc., that work with these 
languages.   At the same time, significant advances have occurred 
recently in non-linear systems solutions methods.  In particular, 
Jacobian-Free Newton-Krylov (JFNK), [3], methods have been 
employed and extended to provide robust and flexible solution 
methods for a wide variety of coupled non-linear physics 



simulation capabilities.  In addition, the combination of JFNK and 
the finite-volume technique, [7], fits well into an object-oriented 
or component-based software environment. 

Thus, the goal of the CartaBlanca project is to produce a 
modern flexible software environment for prototyping physical 
models, discretization schemes and solution methods for non-
linear physics problems on unstructured grids.  CartaBlanca 
employs an object-oriented, component-based design using the 
Java programming language and takes advantage of appropriate 
available software engineering tools.  In order to obtain a 
realistically useful software tool, CartaBlanca is written so that it 
can be used on a variety of unstructured grids in 2 and 3 
dimensions. CartaBlanca is able to accept a variety of mesh 
elements including triangles and quadrilaterals in 2D and 
tetrahedral and hexahedra in 3D.  CartaBlanca employs the finite-
volume discretization method, [7], to provide for wide-ranging 
flexibility with regard to both meshes and physical systems.  
Finally, CartaBlanca is written in a data-parallel fashion to 
provide a test bed for parallel algorithm development. 

1.1. Status 
We currently have a great deal of infrastructure for CartaBlanca in 
place.  We now have a fully 3-dimensional finite-volume 
simulation capability that can solve a variety of physics problems 
on unstructured meshes employing shared-memory parallelism 
using Java’s built-in thread facility.  The following is a list of 
features currently available  
 
• Accepts unstructured grids in 2 and 3 dimensions and with 

triangular, tetrahedral, quadrilateral and hexahedral elements. 
• Accepts Metis, [13], generated mesh partition files; 

computes in parallel on Metis sub domains using Java’s 
built-in thread facility. 

• Has a Graphical User Interface (GUI)  based input facility. 
• Abstract classes for state, physics and solvers objects impose 

a uniform structure for developers, enforced by the compiler. 
• Pre-conditioned Conjugate gradient and GMRES Krylov 

linear solvers interact seamlessly with physics objects. 
• Non-linear quasi-Newton solver is wrapped around linear 

Krylov solvers to provide a JFNK solver. 
• Physics objects for high accuracy scalar advection, heat 

transfer and incompressible flow currently available. 
• Automatic generation of Tecplot (from Amtec Engineering) 

graphics files for arbitrary physical systems. 
• Embedded software-testing facility based on the JUnit 

framework, [12]. 
• Direct remote access to CVS revision control server is 

enabled for efficient team code development.  

1.2. Java Performance 
There have been numerous studies on the use of Java for high 
performance computing.  The recent article by Schatzman and 
Donehower, [21], provides a useful discussion of the potential 
pitfalls involved and tips on how to program in Java to try to 
achieve performance comparable to that obtainable using C, C++ 
and Fortran.  Despite the fact that numerical applications in Java 
are, at present, typically slower than equivalent applications 
written in these languages, it is our opinion that the important 
benefits from Java’s strong typing, clean design, object-
orientation and compatibility with so many useful commercial 

software productivity tools make it a serious alternative language 
for intensive scientific and engineering computing applications, 
even today.  Also, as the Java language specification and Java 
interpreters and compilers improve we should see even greater 
benefits. Particularly encouraging are the Java language changes 
contemplated by the Java Grande Forum, [11]. 

1.3. Related Efforts 
CartaBlanca builds on some important existing software 
programs here at LANL.  CFDLIB, [14], a Fortran program, is an 
outgrowth of the Caveat program, [1], which provides developers 
with a flexible finite-volume multiphase flow simulation 
capability.  The Telluride program, [23], here at LANL provides a 
multi-material simulation capability with interface tracking on 
unstructured grids.  Telluride is written in Fortran 90 and makes 
extensive use of the Fortran 90 module concept.  The CHAD 
program, [18], here at Los Alamos is a flexible node-based finite-
volume simulation program for flow simulation on unstructured 
grids.  CHAD also uses Fortran 90 and accommodates hybrid 
grids using an edge-based connectivity data structure, [22].  
Finally, Kokopelli, is a C++ program for interfacial and polymer 
flow problems.  The authors have had extensive experience with 
each one of these programs. The design and implementation of 
CartaBlanca builds on the lessons learned with each of these.  
Another LANL software effort worth mentioning here is the 
POOMA project, [17] , which used C++ and advanced object 
oriented programming techniques to produce a flexible scientific 
problem-solving environment.  The POOMA experience, [17] 
provides useful insights into the use of object orientation in 
scientific computation. 

It is also worthwhile to note two relevant examples from 
outside our laboratory.  First, Hauser, et. Al., [10], have reported 
on their effort to produce an object-oriented, pure-Java simulation 
code for aerospace applications.  They employ a multi-block 
structured grid computation scheme and use of Java’s thread and 
RMI facilities for parallelization and to enable remote interaction 
between a graphical user interface and the numerical application. 

Another effort worth noting here is the work of Hatakeyama, et. 
Al., [9], who describe an object-oriented paradigm for flow 
simulation software in which the object-oriented concept is used 
at the computational node level to produce flexible abstractions.  
They demonstrate their concepts with a C++, structured grid 
simulation of a wind tunnel with a test object and show that they 
can easily insert and extract arbitrary-shaped flow obstacles. 

1.4. Outline 
In Section 2 we provide an overview the finite-volume method 
for discretization of conservation equations.  In Section 3 we 
describe the major features of the Jacobian-Free Newton-Krylov 
solution method.  We then proceed in Section 4 to give an 
overview of the CartaBlanca software packages.  We follow this 
in Section 5 with some basic results.  Finally, in Section 6 we 
provide a discussion of conclusions and future plans. 
 
2. FINITE VOLUME METHOD 
CartaBlanca is based on the finite volume method, [7], for 
conservation equations.  More specifically, CartaBlanca adopts 
the node-based version of this scheme with edge-based 
connectivity, [18], [22].  We provide here a very simplified 
outline of the method.  For an arbitrary control volume V  with 



bounding surface A  the generic conservation statement is of the 
form 
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where q is the density of some conserved quantity such as mass, 

momentum or energy, f
r

is the local flux of this conserved 
quantity due to a variety of mechanisms, n

r
is an outward normal 

vector defined on the surface of the control volume, and s  is a 
generalized source density.  The first and third integrals in 
Equation (1) are over the entire space of the control volume; the 
second integral is over the surface of the control volume.  The 
derivative on the first integral quantity in Equation (1) is with 
respect to time.  For numerical computations, Equation (1) is 
discretized on a computational grid.  On such a grid, conservation 
nodes are connected by edges as shown in Figure 1.  

 

Figure 1. Control volume for thi  node. 

Each node is associated with a polyhedral control volume, iV , as 
depicted in Figure 1. For each node, the averaged value of the 
conserved density is defined as 
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The quantities iq  are, typically, the state variables for the 
numerical simulation.  Similarly, the average source over each 
control volume is 
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Let ef

r
 be the average flux on the control volume face associated 

with edge e .  Then, if we integrate the Equation (1) over a time 

step, t∆ , using, for example, a first-order difference 
approximation for the time derivative, we obtain the discretized 
form of the conservation equation 
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where the superscripts n and 1n +  denote the present and future 
time levels.  Of course, the fluxes and source terms are generally 

functions of space, time and the state variables, iq .  Thus, the set 
of discretized conservation equations for all nodes and all types of 
conservation quantities forms a nonlinear algebraic system.  The 
physics for a given application lies in the definition of the fluxes 
and sources in Equation (4).  The aim of CartaBlanca is to 
provide scientists and engineers a friendly environment using 
object-oriented, component-based Java for the implementation of 
physics and the solution of the resulting coupled nonlinear 
conservation equations. 
 
3. JACOBIAN-FREE NEWTON-KRYLOV 

METHOD 
We may write the set of conservation equations in the compact, 
abstract form 
 
 ( )1 0n

iF q + =  (5) 

 
where iF  denotes the left hand side of Equation (4) and 1nq +  
denotes the entire set of state variables at the advanced time.  The 
quantity iF is called the residual function.  The system 
represented by Equation (5) is, in general, nonlinear.  We employ 
the Jacobian-Free Newton-Krylov method, [3], in CartaBlanca to 
solve these systems.  We provide here a brief outline in order to 
motivate our discussion of the software design.  Newton’s method 
for a nonlinear system begins with an initial guess of the solution, 

1(0)n
jq + , where the superscript in parenthesis denotes the iterate 

level.  This is, typically, the solution from time level n.  Newton’s 
method then proceeds through a series of iterations involving the 
solution of a sequence of linear systems 
 

 ( )( ) ( )( )1 1 ,n k n kk
ij j iJ q F qδ+ += −  (6) 

 
along with the update 
 

 ( ) ( )1 1 1 ,n k n k kq q δ+ + += +  (7) 
 
where there is an implied summation in Equation (6) on the 
repeated index, j .  The goal, of course, is to proceed until we 
find the solution to Equation (5).  The matrix quantity, ijJ , is the 

Jacobian matrix defined as 
 

 ( ) ( )
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q
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Explicit formation of the Jacobian matrix is typically a very 

expensive computation.  Fortunately, the JFNK method takes 
advantage of the fact that Krylov linear solution methods require 
only the evaluation of matrix-vector products, Jv  (where v is a 
Krylov vector), and not the matrix J by itself, [3].  Furthermore, 
matrix-vector products can be approximated numerically using a 
directional difference formula, 
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where ε  is some small scalar perturbation parameter, [3].  This 
approximation allows us to structure CartaBlanca in such a way 
that the physics developer can focus on providing residual 
functions inside physics objects or components.  Using the 
abstraction embodied in Equation (5) we have genericized the rest 
of the infrastructure for solving and processing physics problems 
so that developers can work simultaneously on a variety of 
different problems using the same software. 
 
4. SOFTWARE 
CartaBlanca is composed, at present, of eleven separate packages.  
Each of these packages contain classes that perform distinct 
functions.  We have tried to design these classes to serve, as much 
as possible, as software components that can be interchanged in a 
“plug and play” mode by developers.  We have also tried to write 
the utility classes in such a way that many developers need not 
concern themselves with the parallel nature of the computation. 

In the following we describe each of these packages and the 
classes they contain.  We also describe the interactions and 
associations between the classes in the different packages.  We 
choose here to start the discussion with the mesh and input 
packages.  These are low-level packages in the sense that they are 
used by many other packages and make sparing use of other 
packages.  We then work our way up through the remaining 
packages of increasing complexity until we finally describe the 
main package, which contains the main methods.  Before 
proceeding to the discussion of the CartaBlanca software 
packages, we start by commenting on our general design 
approach and on our software engineering methods. 

4.1. Approach 
Our approach to the design of CartaBlanca includes the following 
general guiding principles.  First, we have endeavored to make 
use of object-orientation at the highest levels from a physical 
point of view.  Thus our objects are things like physical systems 
that exist over the entire sections of the computational domain or 
grid, rather than at the individual nodes.  This choice was made 
based on the idea that this would yield higher numerical 
performance by avoiding excessive overhead at the node level and 
would also represent a smoother transition into object-oriented 
programming from the point of view of procedural scientific 
legacy codes.  Nevertheless, this approach has allowed us to make 
substantial use of Java and its object-oriented features as will be 
seen below. 

Another principle we have employed is to make the top levels 
of the program as generic as possible so that the developer can 
plug physics into the appropriate program locations and then have 
the rest of the program able to immediately interact.  This was 
accomplished, in part, by the use of abstract classes, which 
provide virtual functionality and interfaces for things such as 
physics and solver objects.  This imposes a certain structure on 
the derived classes that a developer provides. 

4.2. Software Engineering 
Because of the significant research content of our project, our 
approach to team programming follows the lightweight processes 
advocated in the recent article by Fowler, [8].  Iterative 
programming and component development has, for example, been 
very useful.  The use of team coding has also proved helpful. 

In order to foster the team software approach, we have 
incorporated the JUnit, [12], testing facility into CartaBlanca.  
This has been useful in that any developer can perform tests 
easily on their local computing platform to make sure his 
modifications have not corrupted the software.  This is in contrast 
to a situation in which software testing is performed using 
specialized software available only on a certain computing 
platform. 

We have found it very helpful to use a common integrated 
development environment (IDE) for our software development.  
We are currently using JBuilder 4.0 Professional by Borland 
Technologies.  JBuilder gives us an identical programming 
environment on our Windows NT and Solaris workstations.  
JBuilder is also available for LINUX operating systems.  The 
JBuilder environment, conveniently, recognizes the JavaDoc 
@todo functionality.  We use this feature as a simple issues 
tracking mechanism. 

In addition to the JBuilder IDE, we use the GNU CVS revision 
control software for our software repository.  We run CVS as a 
‘pserver’ on one of our Solaris workstations.  Thus we can 
directly check in and out pieces of software over the network 
directly.  We currently run a simple implicit heat transfer and 
scalar advection problems (discussed in Section 5) as test 
problems before committing software modifications to our CVS 
repository. 

Finally, our software design approach for this project began 
with graphical design using a Unified Modeling Language design 
tool called GDPro by Advanced Software Technologies.  We 
found it helpful to use the UML class hierarchy diagrams to map 
out our ideas on software structure.  Once we had a graphical 
design, we were able to generate stubs for our classes 
automatically using GDPro’s forward engineering feature. 

4.3. File IO Package 
The lowest level package used in CartaBlanca was imported for 
basic file input and output (IO) from S. J. Chapman, [4].  This 
package contains classes with methods that enable the developer 
to write C-language-syntax file print and read statements.  These 
methods are used in the mesh package classes for reading text-
based mesh files (see Section 4.6) and in the graphics package 
classes for writing text-based graphics files (see Section 4.10).  

4.4. Input Package 
The input package contains the basic input facilities for problem 
specification.  The user specifies parameters such as solver 
tolerances, physical properties and boundary conditions using a 
graphical user interface (GUI).  Problem data is written to a 
‘ProblemSpecifier’ class object.  The ‘ProblemSpecifier’ object is 
a simple Java Bean, [6], that contains all problem specifications 
from the GUI and can be queried by other objects as needed.  
This class of objects is serializable.  This feature is used to save 
ProblemSpecifier settings to disk.  This eliminates the need for 
any text-based input files, other than the mesh files (see section 
4.6). 

The GUI is contained in three classes named 
‘TabbedInputClass’, ‘TabbedInputFrame’ and 
‘TabbedInputFrame_AboutBox.’  The GUI covers several 
categories of input separated into several tabbed input frames.  
The input categories are General Information, Physics, Linear 
Solver, Non-Linear Solver, Pre-conditioner, Initial Conditions, 



Boundary Conditions and Materials.  A snapshot of the GUI 
interface is shown in Figure 2. 
 

 

Figure 2. Snapshot of GUI.  Tabs enable user to provide input 
on the various categories of input. 

The user can click on the various tabs along the top of the GUI 
to access the different categories of input.  As the user types in 
new information into the fields of the GUI, the information is 
written to the ProblemSpecifier object.  When the user exits the 
GUI, the ProblemSpecifier is output to disk as a serialized object 
for future use and the rest of the program then begins executing 
based on the information in the ProblemSpecifier object. 

4.5. Communications Package 
The communications package contains classes of objects that 
provide functionality for inter-partition communication and for 
global mesh operations.  The class CyclicBarrier provides a 
simple barrier that objects may invoke to synchronize 
calculations.  The implementation was modeled on the barrier 
class provided in Chapter 5 of Oaks and Wong, [16].  The 
CyclicBarrier is used, for example, in discrete operations such as 
divergence field computations in which communication of flux 
quantities among mesh partitions are required. 

The Reduction class in the communications package provides 
for the computation of global quantities across the entire mesh 
such as a global maximum or a global sum.  Global sums are 
required, for example, for mesh-wide dot products of vectors in 
the various Krylov solvers.  The Reduction class accomplishes 
this by using static class variables for sums and extrema. 

4.6. Mesh Package 
The mesh package contains several classes that describe mesh 
elements, edges, interior boundary nodes, and partition and global 
meshes. Let us discuss these classes in the order in which they 
come into existence as the program reads in mesh information 
from mesh files.  To begin, let us describe the three types of mesh 
information files that CartaBlanca requires.  The mesh file format 
follows from those required by the Metis mesh-partitioning 
program, [13].  The three files contain the mesh connectivity, the 

node coordinates and the partitioning of the mesh elements. 
Please see the Metis manual, [13], for a description of these files. 

 
CartaBlanca requires mesh partitioning to be done in such a 

way that elements and not nodes are partitioned.  Referring to 
Figure 3, the mesh partitioning for CartaBlanca must be done 
along node-edge connections.  In the Figure, the heavier edge 
connections denote the boundary between partition A and 
partition B.  To implement this mode of partitioning in 
CartaBlanca, nodes on the partition boundaries are duplicated.  In 
the example in the Figure, the three nodes along the partition 
boundary would be present in each partition as duplicates.  

 

Figure 3. Partitioning in CartaBlanca.  Meshes must be 
partitioned along node connections. 

To illustrate further how mesh partitioning works in 
CartaBlanca, a two-dimensional mesh is shown in Figure 4 
 

 
 
Figure 4. Two-dimensional partitioned mesh. 
 

The mesh partitioning shown in Figure 4 was performed using 
the Metis program and the Metis output was then fed to 
CartaBlanca for computations.  The actual plot was generated 
using the Tecplot program which operates on graphics output 
files from CartaBlanca (see Section 4.10) A further example mesh 
is shown in Figure 5 for the case of a 3-dimensional tetrahedral 
mesh. 
 



 

Figure 5.  Three-dimensional tetrahedral element mesh. The 
shading denotes the 4 partitions that were computed by Metis. 

In general terms, the mesh package classes perform the 
following functions: 
 
• Read and store data from mesh input files. This includes 

element connectivity, node coordinates and element 
partitioning, 

• Compute all required element and node geometrical 
information such as cell face areas and normal vectors for 
the global mesh, 

• Compute all edge connectivity and geometric information 
from the element information for the global mesh, 

• Link all nodes via edge elements, 
• Setup up partition meshes with links between global and 

partition mesh objects including nodes, elements and edges. 
• Set up connectivity between duplicate nodes on different 

partitions. 

4.7. Discrete Operations Package 
The discrete operations package contains a class called 
Divergence which provides a variety of mesh-wide discrete 
operations including the computation of the divergence of a 
vector field, the gradient of a scalar at both mesh nodes and mesh 
faces as well as some more specialized operations.  Some of the 
specialized operations include finding the maximum face-by-face 
inflow values for each node for advection calculations and finding 
the diagonal term of a mesh-wide matrix operator.  All of these 
operations require communication and therefore use the duplicate 
node connectivity information from the mesh package classes and 
the barrier object from the communications package. 

4.8. Physics Package 
The physics package contains classes that allow a developer to 
input and specify the conservation equations that he or she would 
like to solve.  The developer first must set up an AbsState class 
corresponding to his physical system.  This is a container class 
that is discussed below in section 4.8.1.  Once the AbsSstate class 
is set up, the user then can specify his conservation equations in 
an AbsProblemPhysics class.  This is discussed in section 4.8.2.  

When specifying both the AbsState class and the 
AbsProblemPhysics class, the user must extend abstract classes 
that provide the basic format that is expected by the rest of 
CartaBlanca. 

4.8.1. AbsState Class 
The AbsState class is an abstract class that must be extended by 
the developer to provide a data container for state variables for 
specific physics problems.  The state variables are fundamentally 
stored in a two dimensional array wherein the first dimension is 
the variable type and the second dimension is the node index.  So, 
for example, if one is trying to solve a problem with state 
variables for pressure, and three components of velocity, then the 
first dimension of this array would be four.  The two-dimensional 
representation is convenient for developers since they tend to 
work with the governing equations a field or state variable type at 
a time.  The two-dimensional view is also a convenient format for 
the graphics package since it also processes the data a field at a 
time. 

Krylov solvers, however, work in terms of a one-dimensional 
state vector. Thus, the AbsState class also provides a one-
dimensional view of the same state data.  Currently, the one-
dimensional view is provided as a copy of the two dimensional 
data.  The copy is performed using Java’s System.arraycopy 
function for best performance.  When and if Java provides a true 
two-dimensional array, [11], this copy may be avoided altogether. 

4.8.2. AbsProblemPhysics Class 
For linear physical systems, developers can specify their physical 
system behavior by extending the AbsProblemPhysics class.  
AbsProblemPhysics is an abstract class that lays out what 
CartaBlanca expects from physics objects.  The most important 
feature of this class of objects is the methods to get the right and 
left hand side of the governing equations for the state variables.  
The solvers in CartaBlanca interact with these physics object 
methods to obtain the right-hand side of the linear equation 
system and the matrix-vector multiply.  Another important 
behavior of AbsProblemPhysics objects is the pre-conditioning 
method.  The Krylov solvers also interact with physics objects by 
invoking their pre-conditioning method.  This method takes a 
Krylov vector from the Krylov solver and updates it according to 
some iterative improvement scheme.  Currently, a Jacobi iteration 
scheme is used.  Plans for a multigrid scheme are in place to 
obtain improved solver performance. 

AbsProblemPhysics classes also inherit some methods for the 
base classes for converting time n  states to time 1n + states.  
These methods can, of course, be overridden in the derived 
classes to provide additional functionality. 

4.8.3. NLAbsProblemPhysics Class 
In the case of nonlinear physics problems, the matrix-vector 
multiply evaluation has to be provided in a generic fashion 
following Equation (9).  The NLAbsProblemPhysics class of 
CartaBlanca extends the AbsProblemPhysics to provide this 
behavior.  In this class of objects, the developer must encode the 
governing equations into methods that return the full nonlinear 
residual equation in the form of a left and right hand side.  The 
left and right hand side correspond to the implicit and explicit 
parts of the governing equations.  These objects invoke these 
nonlinear get methods from the overridden linear get methods 



from AbsProblemPhysics class using Equation (9) to produce a 
linear matrix-vector multiply evaluation.  Since 
NLAbsProblemPhysics inherits from AbsProblemPhysics, all 
other behavior, such as pre-conditioning is available. 

Figure 6 provides a graphical overview of the physics class 
inheritance hierarchy that was generated directly from the Java 
source code using GDPro. 
 

AbsProblemPhysicsAbsState

NLHeatTransfer

HeatTransferP

HtStateICState

IncompressibleFlow NLAbsProblemPhysicsScalarAdvection

 

Figure 6. UML Class hierarchy diagram of the Physics 
package.  Note that NLHeatTransfer inherits from 
NLAbsProblemPhysics which inherits from 
AbsProblemPhysics. 

4.9. Solver Package 
The solver package contains classes for linear and nonlinear 
solvers. As for the classes in the physics package, an abstract 
solver class, AbsSolver, is provided as a parent for all solvers.  
Currently, this class has been extended to provide users a 
Conjugate Gradient and Gmres Krylov solver class.  In addition, 
an ‘explicit’ solver is provided for fully explicit calculations 
which essentially bypasses any solution method at all and simply 
returns the right hand side as the solution.  Finally, a Newton-
Gmres (JFNK) solver is provided for nonlinear problems.  Each 
of these solvers communicates directly with physics objects 
through method invocations.  The solver class inheritance 
hierarchy is shown in Figure 7. 

 

Figure 7.  Solver package class hierarchy. 

Included in the figure is a class diagram for Fgmres, or Flexible 
Gmres that allows for increased pre-conditioning options.  This 
will be added at a later date to allow for increased solver method 
prototyping options. 

4.10. Graphics Package 
The Graphics package, at present, contains only one class that 

can be used to produce Tecplot output files.  The class interacts 
with the abstract state class so that it automatically knows about 
new state variables, etc.  As mentioned in Section 4.3, the 
graphics class currently uses the Chapman IO facility to produce a 
text-based file.  Eventually, this class will be extended to allow 
for additional plot file output formats.  We also envision direct 
use of Java graphics. 

4.11. Problem Driver Package 
The ProblemDriver package contains the Driver class, a top-level 
driver for solving physics problems on each mesh partition.  The 
Driver class implements Java’s Thread-class Runnable interface.  
This enables data-parallel computation in CartaBlanca with each 
thread corresponding to a particular mesh partition.  Figure 8 
shows a UML association diagram for the Driver class. 
 

 

Driver

CyclicBarrier
{Imported}

 

Divergence
{Imported}

 

ProblemSpecifier
{Imported}

 

MeshDriver
{Imported}

 

AbsProblemPhysics
{Imported}

 

AbsSolver
{Imported}

Runnable
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Figure 8.  Association diagram for driver class. 

As can be seen, the Driver class interacts with all the major 
CartaBlanca objects from an AbsProblemPhysics object to an 
AbsSolver object. 

4.12. Main Package 
The main package consists of several classes that contain the 
public static main method that drives the entire simulation.  The 
class PhysMain contains a main method that instantiates all high-
level objects and invokes the start method for all of the Driver 
objects for each mesh partition. 

 

Figure 9. Flow chart for CartaBlanca main method. 

 
5. RESULTS 
Here we provide information on compilation, run-time 
performance and three preliminary simulation results from 
CartaBlanca.  This work was performed using an SGI 320 Dual 
Processor workstation with 500 MHz Pentium III processors and 
the Windows NT operating system.  All of the physics 
simulations were performed using two threads for two-processor 
data parallel computations. 
 



5.1. Compilation 
The entire software package compiles to byte code using JBuilder 
4.0 with the Java 1.3 JDK in a matter of a few seconds.  In 
addition, we have begun to use the optimizing compiler called 
JOVE (version 2.0) by Instantiations, Inc to produce native code 
executables of CartaBlanca.  Without the GUI, the code compiles 
from byte code to native code executable in a matter of 3 to 4 
minutes.  With our GUI, the compilation takes about an hour, 
however. 

5.2. Scalar Advection 
The first two examples are of explicit scalar advection 
calculations done on the triangular element grid shown in Figure 
4. The results of the calculations are shown in Figure 10 and 
Figure 11.  These calculations were performed using 2 threads in 
parallel on the two-processor workstation. Each thread operated 
on a separate mesh partition. 

 

Figure 10.  Results from a continuum scalar advection 
simulation on a two-dimensional triangular mesh.  

 

Figure 11. Results from a interface-tracking scalar advection 
simulation on a two-dimensional triangular mesh. 

Each calculation started with a pulse of concentration in the lower 
left hand corner of the domain.  In the first example, the 
concentration pulse has a Gaussian spatial distribution while in 
the second example; the pulse was a spatial step function with 
circular shape.  This material was advected towards the top right 
according to the conservation equation 
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where c is concentration, iu  is the thi  component of velocity, t  

is time and ix is the thi spatial coordinate.  There is an implied 
summation over the repeated index in the second term.  In these 
example calculations, the velocity was a constant with component 
values of one in the horizontal and vertical directions.  The final 
conditions of the concentration pulses are shown in the top-right 
of Figure 10 and Figure 11. Note that in the case of Figure 10 we 
used the continuum advection version of CartaBlanca’s advection 
facility while in Figure 11 we used the interface-tracking version 
of the advection facility. 

The calculations used Cartablanca’s explicit solver to advance 
the solution of Equation (10) over 120 time cycles.  Although 
Equation (10) is relatively simple, it is commonly known that it is 
difficult to obtain accurate numerical solutions for this equation 
that minimize the artificial numerical smearing of such 
concentration pulses and also avoid the creation of artificial 
extrema, especially on triangular grid meshes.  Also, doing such 
calculations using interface tracking is also a very difficult task.  
These examples demonstrate that CartaBlanca has advanced 
advection algorithms that can be used by developers for a wide 
variety of applications.  

5.3. Implicit Heat Transfer 
The second example is a simple implicit heat transfer calculation 
performed on the same mesh.  CartaBlanca’s Gmres solver was 
used to compute the temperature field as a function of time over 5 
time cycles according to the equation 
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where T is temperature and α  is the thermal diffusivity, which 
was set to one for the example problem.  Zero-gradient boundary 
conditions were used which correspond physically to a perfectly 
insulated box.  The final state is, therefore, a uniform temperature 
of one-half.  CartaBlanca found this solution, as expected, using 
both a single mesh partition and with the 2 mesh partitions on the 
SGI 2-processor workstation mentioned above.  The observed 
speed-up going from one to two processors was a factor of about 
1.5.  While this is not perfect scaling, our experience from other 
parallel codes has been that good scaling is observed only with 
more than 4 processors.  More work is required to completely 
understand the scaling characteristics of CartaBlanca. 
 

5.4. Performance 
While we are still in the infrastructure-building phase of this 
project and have not yet been able to spend time optimizing code, 
we can provide some preliminary indications of performance.  In 
order to compare with C++, for example, we have timed the 
computation of the divergence of a vector field on an unstructured 
mesh using both CartaBlanca and a C++ version of the same 
algorithm. (with edge-based indirect addressing).  The C++ 
version of the algorithm was from the Kokopelli code mentioned 
in Section 1.3, which was compiled with optimization.  We found 



that the byte-code-interpreted Java run time was about the same 
as the C++ run time.  While we expected some performance 
increase with the native-code compiled version of CartaBlanca 
using the JOVE product, we, unfortunately, saw speed-ups of 
only a few percent.  We  need to spend more time to fully 
understand these preliminary results. 
 
6. CONCLUSIONS AND FUTURE PLANS 
Since we are still very much in the development phase of this 
project, it is too early to provide definitive assessments of the 
design and performance of CartaBlanca.  In a qualitative sense, 
we can say that CartaBlanca has already been a useful tool for 
algorithm development since we have been able to do the research 
on our new advection scheme exclusively within CartaBlanca.  
That is, CartaBlanca has provided us with sufficient usability and 
performance that we did not choose to go “off-line” to some other 
program or development tool to do one of our main jobs, 
algorithm research and development.  So in this sense, we can 
already claim some “bottom-line” success. 

In the future, we plan to pursue a number of promising leads in 
the near future.  The following is a partial list covering some of 
the major possible directions: 
 
• Implement a fully coupled multiphase flow capability for 

weapons-complex and other applications.  This would put us 
in a position to examine a number of important flow 
simulation problem classes including single-phase flow, 
interfacial flows and potentially, fluid-structure interactions. 

• Implement and investigate operator-split pre-conditioning 
strategies for complex coupled systems.  This should provide 
significant speed-up to our Jacobian-Free Newton-Krylov 
solver facility.  Once this is fully in place, we should be able 
to better assess how well CartaBlanca and Java could serve 
as a serious production simulation tool. 

• Implement a moving and adaptive mesh capability.  This 
capability would further the utility of CartaBlanca and may 
be particularly important for fluid-structure interaction 
simulation problems.  Furthermore, it would test how well 
we have encapsulation the present meshDriver object when 
we replace it with one that can perform mesh motion. 

• Fully investigate the use of Java native-code compilers. 
• Extend CartaBlanca to distributed memory architecture for 

cluster-based computing.  We are considering the use of 
JavaParty, [19], as a means to extend CartaBlanca to 
distributed memory systems. 
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